Lewis Acid Catalyzed, Selective Cyclopropane-Ring Opening in Ingol Diterpene Derivatives

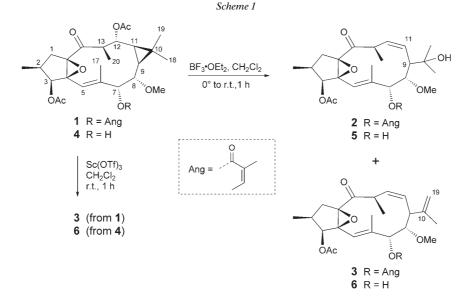
by Masuna Srinivasulu^a), Vanimireddy Lakshmi Niranjan Reddy^a), Samala Malla Reddy^a), Veluri Ravikanth^b), Tuniki Venugopal Raju^a), Sistla Ramakrishna^b), and Yenamandra Venkateswarlu^{*a})

 ^a) Natural Products Laboratory, Organic Chemistry Division-I
^b) Pharmacology Division, Indian Institute of Chemical Technology, Hyderabad-500007, India (phone:+91-40-27193167; fax: +91-40-27160512; e-mail: luchem@iict.res.in)

Lewis acid mediated skeletal rearrangement of the ingol diterpenoids **1** and **4** *via* regio- and stereospecific cyclopropane-ring opening afforded the four new compounds **2**, **3**, **5**, and **6**, named nivulianol A – D (*Scheme 1*). Their structures were established by means of IR, MS, and in-depth NMR spectroscopic analyses. The rearranged congeners were tested for lipopolysaccharide (LPS)-induced prostaglandin (PG) E₂ (cyclo-oxygenase-2) inhibition. Thereby, nivulianol B (=(1S*,2E,4R*,5S*,7Z,9S*,11R,13S*,14S*)-14-acetoxy-5-methoxy-3,9,13-trimethyl-6-(1-methylethenyl)-10-oxo-15-oxatricyclo[9.3.1.0^{1,11}]pentadeca-2,7-dien-4-yl (2Z)-2-methylbut-2-enoate; **3**) was found to be significantly active, with an *IC*₅₀ value of 36.3 µg/ml.

Introduction. – The unique reactivity of cyclopropanes is due to their high level of ring strain, which offers considerable utility in organic synthesis [1-3]. Many potential applications of cyclopropanes as useful building blocks have been predicted based on regio- and stereo-controlled ring-opening reactions [4-6]. Typically, electrophilic ring opening has been achieved by transition metals (Pd, Pt, Rh, and Ir), halide ions, and *Lewis* acids [7-12]. Electron-donor-substituted cyclopropanes, particularly alkoxy, silyloxy, and arylsulfanyl compounds, have found increasing use, primarily due to facile and regio-controlled cyclopropane ring opening [13-18].

Results and Discussion. – 1. *Chemical Transformation and Structure Elucidation*. During our studies on the chemical modification of various secondary metabolites from plant sources [19] and marine organisms [20] [21], we observed that $BF_3 \cdot OEt_2$ reacts with the diterpenoid 1 (= 3,12-di-*O*-acetyl-8-*O*-methyl-7-*O*-(2-methylbut-2-enoyl)ingol)¹) [22] to yield the rearranged compounds nivulianol A (2) and B (3), whereas scandium triflate, Sc(OTf)₃²), gave only 3 (*Scheme 1*). In turn, the related compound 4 [23][24], lacking the angeloyl group³), reacted with $BF_3 \cdot OEt_2$ to afford both nivulianol C (5) and D (6), whereas, in the presence of Sc(OTf)₃, only 6 was obtained.


Compound **2** was obtained as a semisolid material ($[\alpha]_D = -102.6$ (c = 0.15, CHCl₃)), which analyzed for C₂₈H₄₀O₈ by HR-FAB-MS, as confirmed by the ion at m/z 505.2765 ($[M + 1]^+$, calc. 505.2791). Its IR spectrum showed bands at 3423, 1740, 1720,

© 2005 Verlag Helvetica Chimica Acta AG, Zürich

The systematic name of ingol is (1*R*,3*R*,4*R*,5*R*,7*S*,8*S*,9*R*,10*E*,12*S*,13*S*,14*S*)-4,8,9,13-tetrahydroxy-3,6,6,10,14-pentamethyl-16-oxatetracyclo[10.3.1.0^{1,12}.0^{5,7}]hexadec-10-en-2-one.

²) Triflate (Tf) = trifluoromethanesulfonate.

³) Angeloyl (Ang) = (Z)-2-methylbut-2-enoyl.

and 1705 cm⁻¹, indicating OH, and keto and ester C=O groups. The ¹H-NMR spectrum of compound **2** (*Table*) showed an AcO group at $\delta(H)$ 2.10 (*s*, 3 H), a MeO group at 3.48 (*s*, 3 H), and an AngO group ($\delta(H)$ 6.15 (*m*, 1 H), 1.95 (*d*, *J* = 1.4 Hz, 3 H), 2.03 (dd, *J* = 7.3, 1.4 Hz, 3 H)). Also observed were three olefinic H-atoms at $\delta(H)$ 5.81 (*s*, H–C(5)), 4.99 (*dd*, *J* = 14.9, 9.8 Hz, H–C(12)), and 4.78 (*dd*, *J* = 14.9, 9.8 Hz, H–C(11)), a vinylic Me group at 1.90 (*s*, Me(17)), two Me groups connected to an oxygenated C-atom at $\delta(H)$ 1.15 and 0.99 (Me(18) and Me(19), resp.), two methine groups (geminal to ester functions) at $\delta(H)$ 5.02 (*d*, *J* = 8.4 Hz, H–C(3)), and 5.26 (br. *s*, H–C(7)), and a methine geminal to an ether linkage at $\delta(H)$ 2.77 (*dd*, *J* = 12.0, 2.8 Hz, H–C(8)). Finally, an exchangeable H-atom at $\delta(H)$ 4.58 (*s*, 10-OH) was detected.

Careful comparison of the ¹H- and ¹³C-NMR (DEPT) spectra of compounds **1** and **2** (*Table*) revealed that the latter was devoid of signals due to the cyclopropane ring $[\delta(C) 27.31(C(9)), 19.28 (C(10)), 30.53 (C(11)) \text{ in } \mathbf{1}]$ and the methine connected to the Ac group ($\delta(C)$ 71.0 (C(12) in $\mathbf{1}$). Instead, the presence of an (*E*)-configured C=C bond at $\delta(C)$ 132.31 (C(11)) and 129.8 (C(12)), and a quaternary C-atom connected to an O-atom at $\delta(C)$ 81.4 (C(10)) were noticed. Further, the ¹H,¹H-COSY spectrum of **2** established that H–C(12) at $\delta(H)$ 4.99 (*dd*) was correlated with H–C(13) at 3.68 (*dd*) and H–C(11) at 4.78 (*dd*). The latter, in turn, showed a correlation with H–C(9) at $\delta(H)$ 3.69 (dd), which was linearly correlated with H–C(8) at $\delta(H)$ 2.77 (*dd*).

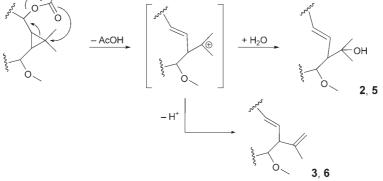
The relative configurations at most of the stereogenic centers of **2** were established by NOESY experiments. The H–C(9) signal at δ (H) 3.69 was correlated with Me(18) at δ (H) 1.15 (s). H–C(7) at δ (H) 5.26 (s) showed correlations with H–C(8), H–C(13), and Me(17) at δ (H) 2.77 (dd), 3.68 (dd), and 1.90 (s), respectively. From all these data, the structure of nivulianol A (**2**) was established as (1*S**,2*E*,4*R**,5*S**,7*Z*,9*S**,11*R**,13*S**,14*S**)-14-acetoxy-6-(1-hydroxy-1-methylethyl)-

Table. NMR Data of Compounds 2, 3, 5, and 6. At 200 MHz in $CDCl_3$; δ in ppm, J in Hz.

Position	2		3		5		6	
	¹ H	^{13}C	¹ H	$^{13}\mathrm{C}$	$^{1}\mathrm{H}$	¹³ C	$^{1}\mathrm{H}$	¹³ C
1α	1.74 $(d, J = 14.6)$	33.5	1.73 (<i>d</i> , <i>J</i> = 14.8)	33.82	1.73 (<i>d</i> , <i>J</i> = 14.5)	33.61	1.73 (<i>d</i> , <i>J</i> = 14.5)	33.80
1β	2.74 (<i>dd</i> , <i>J</i> = 14.6, 9.1)	-	2.73 (dd, J = 14.8, 9.0)	-	2.80 (dd, J = 14.5, 9.0)	-	2.76 (dd, J = 14.5, 9.2)	-
2	2.50-2.62 (m)	29.7	2.50-2.62 (m)	29.79	2.50-2.62 (m)	29.69	2.50-2.62 (m)	29.69
3	5.02 (d, J = 8.4)	77.7	5.02 (d, J = 8.4)	79.34	5.10(d, J = 8.4)	77.96	5.09(d, J = 8.4)	78.10
4	-	73.7	-	73.72	-	73.73	-	73.72
5	5.81 (s)	116.6	5.81 (s)	116.78	5.63 (s)	117.01	5.62 (s)	116.90
6	-	141.4	-	141.62	-	142.51	-	142.53
7	5.26 (s)	72.19	5.27 (s)	72.60	4.40 (s)	72.35	4.41 (s)	73.14
8	2.77 (<i>dd</i> , <i>J</i> = 11.9, 2.8)	72.39	3.52 (d, J = 10.4)	77.8	3.58 (dd, J = 10.3, 1.6)	72.73	3.40 (dd, J = 10.6, 2.0)	73.13
9	3.69 (dd, J = 16.6, 6.8)	54.05	3.15 (br. $t, J = 10.1$)	52.77	2.74-2.80 (m)	52.33	3.13(t, J = 10.3)	51.19
10	-	81.4	-	145.5	-	83.01	-	145.98
11	4.78 (dd, J = 14.9, 9.8)	132.31	5.30 (<i>dd</i> , <i>J</i> = 18.1,13.7)	132.35	4.91 (dd, J = 15.1, 10.0)	132.25	5.21 (<i>dd</i> , <i>J</i> = 15.0, 10.3)	132.08
12	4.99 (dd, J = 14.9, 10.4)	129.8	4.70 (dd, J = 18.1, 5.5)	128.43	4.78 (dd, J = 15.0, 9.5)	129.36	4.67 (dd, J = 15.0, 10.0)	128.18
13	3.68 (dd, J = 10.4, 1.7)	45.8	3.62-3.7 (<i>m</i>)	45.89	3.58-3.62 (m)	45.68	3.60-3.68 (<i>m</i>)	45.72
14	-	207.1	-	206.99	-	206.66	-	206.61
15	-	72.68	-	72.51	-	73.21	-	73.72
16	0.89 (d, J = 7.6)	16.9	0.89 (d, J = 7.2)	16.89	0.91 (d, J = 7.4)	17.09	0.91 (d, J = 7.3)	17.05
17	1.90 (s)	17.3	1.93 (s)	17.44	1.82 (s)	17.09	1.85 (s)	17.04
18	1.15 (s)	29.7	1.68 (s)	20.65	1.06 (s)	29.69	1.69 (s)	29.69
19	0.99 (s)	24.9	4.69, 4.74 (2s)	110.79	1.15 (s)	25.33	4.70, 4.74 (2s)	110.57
20	1.08 (d, J = 7.6)	17.3	1.08 (s)	17.03	1.07 (d, J = 7.4)	17.08	1.06 (d, J = 7.3)	20.64
3-AcO	2.10 (s)	20.7	2.10 (s)	20.65	2.08 (s)	20.64	2.07 (s)	20.80
		170.2		170.09		170.00		170.12
8-MeO	3.48 (s)	56.55	3.36 (s)	57.48	3.50 (s)	56.44	3.38 (s)	57.71
10-OH	4.58 (s)	-	-	-	4.50 (s)	-	-	_
7-AngO	6.15 (<i>m</i>)	166.3	6.1-6.15 (<i>m</i>)	166.20	-	_	-	_
	1.95 (d, J = 1.4)	127.2	1.94 (d, J = 1.5)	127.45				
	2.03 (dd, J = 7.3, 1.4)	139.8	2.02 (dd, J = 7.2, 1.5)	139.48				
		15.9		16.03				
		20.6		20.65				

5-methoxy-3,9,13-trimethyl-10-oxo-15-oxatricyclo $[9.3.1.0^{1,11}]$ pentadeca-2,7-dien-4-yl (2*Z*)-2-methylbut-2-enoate.

Compound **3** was obtained as a semisolid, with $[\alpha]_D = -18.0 (c = 0.25, CHCl_3)$, and analyzed for C₂₈H₃₈O₇ by HR-FAB-MS $[m/z 487.2690 ([M+1]^+, calc. 487.2712)]$. IR bands at 1739, 1720, and 1705 cm⁻¹ indicated keto and ester C=O groups. The ¹Hand ¹³C-NMR spectra (*Table*) were similar to those of compound **2**, except for the presence of an isopropylidene group instead of an isopropyl alcohol, as evident from the signals at δ (H) 4.69/4.74 (2s, CH₂(19)) and 1.68 (s, Me(18)). From these data, the structure of nivulianol B (**3**) was established as (1S*,2E,4R*,5S*,7Z,9S*,11R,13S*,14S*)-14-acetoxy-5-methoxy-3,9,13-trimethyl-6-(1methylethenyl)-10-oxo-15-oxatricyclo[9.3.1.0^{1,11}]pentadeca-2,7-dien-4-yl (2Z)-2-methylbut-2-enoate.


Similarly, the structures of compounds **5** and **6** were derived by analyses of their MS and NMR (¹H, ¹³C, COSY, NOESY) data (*Table*). Nivulianol C (**5**) was obtained as a semisolid, $[\alpha]_D = +5.83$ (c = 0.3, CHCl₃), which analyzed for C₂₃H₃₄O₇ by HR-FAB-MS

[m/z 423.2375 ($[M+1]^+$, calc. 423.2394)], and was identified as $(1R^*, 3S^*, 4Z, 7S^*, 8R^*, 9E, 11S^*, 12S^*, 13S^*)$ -8-hydroxy-6-(1-hydroxy-1-methylethyl)-7-methoxy-3,9,13-trimethyl-2-oxo-15-oxatricyclo[9.3.1.0^{1,11}]pentadeca-4,9-dien-12-yl acetate.

Nivulianol D (6), a semisolid with $[\alpha]_D = -42.85$ (c = 0.35, CHCl₃), analyzed for C₂₃H₃₂O₆ by HR-FAB-MS (m/z 405.2286 ($[M + 1]^+$, calc. 405.2269)), and was found to correspond to ($1R^*,3S^*,4Z,7S^*,8R^*,9E,11S^*,12S^*,13S^*$)-8-hydroxy-7-methoxy-3,9,13-trimethyl-6-(1-methylethenyl)-2-oxo-15-oxatricyclo[9.3.1.0^{1,11}]pentadeca-4,9-dien-12-yl acetate.

From a mechanistic point of view, the rearrangement of compounds 1 and 4 probably involves an intermediary carbocation formed *via* acetoxy-promoted ring opening followed by loss of AcOH, as proposed in *Scheme 2*.

2. *Biological Activity*. In earlier work [23], we had tested the prostaglandin (PG) E_2 inhibition properties of several ingol diterpenoids, and found that 12-*O*-acetyl-8-*O*-methyl-7-*O*-(2-methylbut-2-enoyl)ingol exhibits strong *in vitro* anti-inflammatory activity, with an *IC*₅₀ value of 0.003 µM, which lies one order of magnitude below that of celecoxib (*Celebrex*TM; 0.050 µM) [23].

The role of cyclooxygenase-2 (COX-2) induction in the pathogenesis of colorectal and breast cancer is well reported [25][26]. Hence, compounds 3-6 were tested for COX-2 inhibition in an *in vitro* enzyme immuno-assay, which involves lipopolysaccharide (LPS)-induced PG E₂ inhibition. Of all the compounds tested, nivulianol B (**3**) showed 40% inhibitory activity at a concentration of 10 µg/ml. The other compounds did not show significant activity up to 50 µg/ml concentration, nivulianol A (**2**) giving rise to only 10% activity. Hence, nivulianol B (**3**) was chosen for the determination of IC_{50} . For a concentration range of 10–50 µg/ml, we determined an IC_{50} value of 36.3 µg/ml for **3**.

Experimental Part

Boron Trifluoride Catalyzed Rearrangement. To a stirred soln. of 1 (25 mg) in anh. CH₂Cl₂ (5 ml) under Ar atmosphere, BF₃·OEt₂ (46%; 80 μ l, 0.56 mmol) was added at 0°. The mixture was allowed to warm to r.t. over

2530

1 h. Then, the mixture was diluted with AcOEt, and extracted with sat. aq. NaHCO₃ soln. The org. layer was washed with H_2O and brine, dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂; hexane/AcOEt 8:2) to afford compounds **2** (13.2 mg) and **3** (8.2 mg).

Similarly, with 4 as the starting material, compounds 5 (11.3 mg) and 6 (5.2 mg) were obtained.

Scandium Triflate Catalyzed Rearrangement. To a stirred soln. of 1 (25 mg) in anh. CH₂Cl₂ (5 ml) under Ar atmosphere, Sc \cdot (OTf)₃ (5 mg, 0.01 mmol) was added at r.t., and the mixture was stirred for 1 h. Then, the mixture was diluted with AcOEt, and extracted with sat. aq. NaHCO₃ soln. The org. layer was washed with H₂O and brine, dried (Na₂SO₄), and evaporated. Purification by CC (as above) furnished compound **3** (16.5 mg). Similarly, with **4** as the starting material, compound **6** (13.2 mg) was obtained.

We thank Dr. J. S. Yadav, Director IICT, for his encouragement. V. L. N. R., M. S., and S. M. R are thankful to CSIR, New Delhi, for providing fellowships.

REFERENCES

- [1] J. E. Backvall, E. V. Bjorkman, L. Petterson, P. Siegbahn, A. Strich, J. Am. Chem. Soc. 1985, 107, 7408.
- [2] H. M. Walborsky, J. F. Pendleton, J. Am. Chem. Soc. 1960, 82, 1405.
- [3] A. Delgado, L. Castedo, J. L. Mascarenas, Org. Lett. 2002, 4, 3091.
- [4] D. H. Gibson, C. H. De Puy, Chem. Rev. 1974, 74, 605.
- [5] R. H. Crabtree, Chem. Rev. 1985, 85, 245.
- [6] M. A. Battiste, J. M. Coxon, in 'The Chemistry of the Cyclopropyl Group'; Ed. Z. Rappoport, J. Wiley & Sons, Chichester, 1987.
- [7] P. G. Gassman, S. M. Bonser, Tetrahedron Lett. 1983, 24, 3431.
- [8] M. R. A. Blomberg, P. E. M. Siegbahn, J. E. Backvall, J. Am. Chem. Soc. 1987, 109, 4450.
- [9] P. W. Jennings, L. L. Johnson, Chem Rev. 1994, 94, 2241.
- [10] P. Kocovsky, J. Srogl, M. Pour, A. Gogoll, J. Am. Chem. Soc. 1994, 116, 186.
- [11] M. Hayashi, T. Ohmatsu, Y. P. Meng, K. Saigo, Angew. Chem., Int. Ed. 1998, 37, 837.
- [12] P. A. Wender, C. O. Husfeld, E. Langkopf, J. A. Love, J. Am. Chem. Soc. 1998, 120, 1940.
- [13] K. Ikura, I. Ryu, N. Kambe, N. Sonoda, J. Am. Chem. Soc. 1992, 114, 1520.
- [14] I. Ryu, K. Ikura Y. Tamura, J. Maenaka, A. Ogawa, N. Sonoda, Synlett 1994, 941.
- [15] T. Sugimura, T. Futagawa, A. Mori, I. Ryu, N. Sonoda, A. Tai, J. Org. Chem. 1996, 61, 6100.
- [16] J. Bayer, R. Madsen, J. Am. Chem. Soc. 1998, 120, 12137.
- [17] J. O. Hoberg, J. Org. Chem. 1997, 62, 6615.
- [18] W. R. Lang, C. Djerassi, Tetrahedron Lett. 1992, 23, 2063.
- [19] V. Ravikanth, P. Ramesh, P. V. Diwan, Y. Venkateswarlu, Heterocycl. Commun. 2000, 6, 315.
- [20] P. Ramesh, V. L. N. Reddy, N. S. Reddy, Y. Venkateswarlu, J. Nat. Prod. 2000, 63, 1420.
- [21] N. S. Reddy, T. V. Goud, Y. Venkateswarlu, J. Chem. Res., Synop. 2000, 438.
- [22] V. Ravikanth, V. L. N. Reddy, A. V. Reddy, P. V. Diwan, Y. Venkateswarlu, Biochem. Syst. Ecol. 2003, 31, 447.
- [23] V. Ravikanth, V. L. N. Reddy, P. Ramesh, T. P. Rao, P. V. Diwan, Y. Venkateswarlu, *Phytochemistry* 2002, 59, 331.
- [24] V. Ravikanth, V. L. N. Reddy, A. V. Reddy, K. Ravinder, T. P. Rao, T. S. Ram, K. A. Kumar, P. V. Diwan, Y. Venkateswarlu, *Chem. Pharm. Bull.* 2003, 51, 431.
- [25] P. Paola, *Toxicol. Lett.* **2000**, *112–113*, 493.
- [26] G. Singh-Ranger, K. Mokbel, Eur. J. Surg. Oncol. 2002, 28, 729.

Received April 12, 2005